 
 
 
 
 
 
 
 
 
#include <Arduino.h>
#include "WiFi.h"
#include "PubSubClient.h"
#include "Ticker.h"
 
const char *ssid = "anny";                 //wifi名
const char *password = "20141208";         //wifi密码
const char *mqtt_server = "183.230.40.39"; //onenet 的 IP地址
 
#define mqtt_devid "626108102"  //设备ID
#define mqtt_pubid "370025"     //产品ID
#define mqtt_password "test123" //鉴权信息
 
WiFiClient espClient;           //创建一个WIFI连接客户端
PubSubClient client(espClient); // 创建一个PubSub客户端, 传入创建的WIFI客户端
 
char msg_buf[200];                                //发送信息缓冲区
char dataTemplate[] = "{\"temp\":%.2f,\"hum\":%.2f}"; //信息模板
char msgJson[75];                                 //要发送的json格式的数据
unsigned short json_len = 0;                      //json长度
Ticker tim1;                                      //定时器,用来循环上传数据
 
//连接WIFI相关函数
void setupWifi()
{
  delay(10);
  Serial.println("连接WIFI");
  WiFi.begin(ssid, password);
  while (!WiFi.isConnected())
  {
    Serial.print(".");
    delay(500);
  }
  Serial.println("OK");
  Serial.println("Wifi连接成功");
}
 
//收到主题下发的回调, 注意这个回调要实现三个形参 1:topic 主题, 2: payload: 传递过来的信息 3: length: 长度
void callback(char *topic, byte *payload, unsigned int length)
{
  Serial.println("message rev:");
  Serial.println(topic);
  for (size_t i = 0; i < length; i++)
  {
    Serial.print((char)payload[i]);
  }
  Serial.println();
}
 
//向主题发送模拟的温湿度数据
void sendTempAndHumi()
{
  if (client.connected())
  {
    snprintf(msgJson, 40, dataTemplate, 22.31, 25.92); //将模拟温湿度数据套入dataTemplate模板中, 生成的字符串传给msgJson
    json_len = strlen(msgJson);                   //msgJson的长度
    msg_buf[0] = char(0x03);                       //要发送的数据必须按照ONENET的要求发送, 根据要求,数据第一位是3
    msg_buf[1] = char(json_len >> 8);              //数据第二位是要发送的数据长度的高八位
    msg_buf[2] = char(json_len & 0xff);            //数据第三位是要发送数据的长度的低八位
    memcpy(msg_buf + 3, msgJson, strlen(msgJson)); //从msg_buf的第四位开始,放入要传的数据msgJson
    msg_buf[3 + strlen(msgJson)] = 0;              //添加一个0作为最后一位, 这样要发送的msg_buf准备好了
    Serial.print("public message:");
    Serial.println(msgJson);
    client.publish("$dp", (uint8_t *)msg_buf, 3 + strlen(msgJson)); //发送数据到主题$dp
  }
}
 
//重连函数, 如果客户端断线,可以通过此函数重连
void clientReconnect()
{
  while (!client.connected()) //再重连客户端
  {
    Serial.println("reconnect MQTT...");
    if (client.connect(mqtt_devid, mqtt_pubid, mqtt_password))
    {
      Serial.println("connected");
    }
    else
    {
      Serial.println("failed");
      Serial.println(client.state());
      Serial.println("try again in 5 sec");
      delay(5000);
    }
  }
}
 
void setup()
{
  Serial.begin(115200);                                  //初始化串口
  delay(3000);                                           //这个延时是为了让我打开串口助手
  setupWifi();                                           //调用函数连接WIFI
  client.setServer(mqtt_server, 6002);                   //设置客户端连接的服务器,连接Onenet服务器, 使用6002端口
  client.connect(mqtt_devid, mqtt_pubid, mqtt_password); //客户端连接到指定的产品的指定设备.同时输入鉴权信息
  client.setCallback(callback);                          //设置好客户端收到信息是的回调
  tim1.attach(20, sendTempAndHumi);                      //定时每20秒调用一次发送数据函数sendTempAndHumi
}
 
void loop()
{
  if (!WiFi.isConnected()) //先看WIFI是否还在连接
  {
    setupWifi();
  }
  if (!client.connected()) //如果客户端没连接ONENET, 重新连接
  {
    clientReconnect();
  }
  client.loop(); //客户端循环检测
} 
 
            GPIO 是指单片机(微控制器)主板上的一组引脚,这些引脚可以发送或接收电信号,但它们不是为任何特定目的而设计的,这就是为什么它们被称为“通用”IO。
Arduino-ESP32与ESP-IDF的版本对应表。
Arduino-ESP32提供了多种文件系统解决方案,本文将深入解析SPIFFS、LittleFS和SD卡三种主流存储方案,帮助你做出最佳选择。
ESP32-P4-WIFI6-DEV-KIT是一款微雪(Waveshare)设计的基于 ESP32-P4 的多媒体开发板,并集成 ESP32-C6,支持 Wi-Fi 6 和 BLE 5 无线连接。它提供丰富的人机交互接口,包括 MIPI-CSI (集成图像信号处理器 ISP)、MIPI-DSI、SPI、I2S、I2C、LED PWM、MCPWM、RMT、ADC、UART 和 TWAI 等。
 
            ESP-Hosted 解决方案提供了将 ESP 板用作 Wi-Fi 和 Bluetooth/BLE 连接的通信处理器的方法。
ESP-Hosted 提供了一种将ESP芯片和模组用作通信协处理器的解决方案,该解决方案为主机微处理器或微控制器提供无线连接,使主机能够与其他设备通信。简单来说为网卡方案。
Arduino+ESP32上使用TFT_eSPI库快速点亮这个屏幕,驱动芯片ST7789
本文给出了一个ESP32与SPI 接口TFT显示屏接线的详细说明,供大家参考。
本文讲解如何在Micropython环境下使用ESP32的ESPNow功能进行数据传输。
ESP-Dongle 是一款基于 ESP32-S3 芯片开发的多功能 USB Device 解决方案。它不仅外形小巧,功能齐全,更集成了无线 U 盘、SD 卡读取以及 USB 无线网卡等多项功能。
 
            ESP32 系列芯片可以利用 CSI 数据实现动作检测和存在检测。无论是自动调节灯光、风扇,还是节能控制,CSI 技术为智能家居带来了新的可能性。随着 CSI 技术的发展,未来的智能家居将能够更精确地感知和响应我们的行为,实现更高效、更人性化的控制。
