本方案使用MicroPython编程,请先在ESP32上写入MicroPython的固件,具体请参考站内文件。
用Tonny连接ESP32开发板,将以下程序复制到开发板环境根目录下。
wifi.pyimport network
import time
def connect():
ssid = '***your_ssid***'
password = '***your_passwd***'
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect(ssid, password)
while wlan.isconnected() == False:
print('Waiting for connection...')
time.sleep(1)
print('Connected on {ip}'.format(ip = wlan.ifconfig()[0]))
from umqtt.simple import MQTTClient
MQTT_SERVER = 'iot.xpstem.com'
MQTT_PORT = 1883
MQTT_USER = 'ss10001'
MQTT_PASSWD = '***passwd***'
MQTT_CLIENT_ID = 'ESP32-S3-001'
def connect():
client = MQTTClient(MQTT_CLIENT_ID, MQTT_SERVER, MQTT_PORT, MQTT_USER, MQTT_PASSWD, 300)
client.connect()
print('Connected to MQTT Broker "{server}"'.format(server = MQTT_SERVER))
return client
###################################
# 智能浇花程序
#
# 通过检测土壤温度情况来控制浇水。
# 要结合物联网系统来使用
#
# author: billy_zh@126.com
###################################
import wifi
import mqtt
import json
import random
import time
import _thread
from machine import ADC, Pin
# 土壤温度数据上报主题
PUB_TOPIC = b'user/******/data'
# 水泵继电器数据订阅主题
SUB_TOPIC = 'user/******/ctrl'
# 土壤温度传感器数据端口
adc = ADC(Pin(2))
adc.width(ADC.WIDTH_12BIT) # 位宽,取值0-4095
adc.atten(ADC.ATTN_11DB) # 3.3v基准
# 水泵继电器控制端口
pin = Pin(6, Pin.OUT)
# wifi 连接
wifi.connect()
# mqtt 连接
mqtt_client = mqtt.connect()
####################
# 读取土壤温度数据并上报到服务器
####################
def read_and_publish():
t = time.localtime()
value = adc.read()
msg_dict = {
'id': 't{year}{month}{day}{id}'.format(year=t[0],month=t[1],day=t[2],id=random.randint(100000, 999999)),
'data': {'temp':value}
}
msg = json.dumps(msg_dict)
mqtt_client.publish(PUB_TOPIC, msg)
print('消息已发送到{topic}, data:{data}'.format(topic=PUB_TOPIC.decode(), data=value))
####################
# 控制消息回调
####################
def msg_callback(topic, msg):
try:
payload = msg.decode();
print('从{topic}接收到消息, data:{data}'.format(topic=topic.decode(), data=payload))
dict = json.loads(payload)
state = dict['data']['state']
keepSeconds = dict['data']['keepSeconds']
if state==1:
pin.on()
print('pin 6 on...')
time.sleep(keepSeconds)
pin.off()
print('pin 6 off...')
except Exception as e:
print(f"消息接收出现错误:{e}")
def send_task():
while True:
try:
read_and_publish()
time.sleep(60)
except Exception as e:
print(f"消息发送出现错误:{e}")
mqtt_client = mqtt.connect()
# mqtt 订阅
mqtt_client.set_callback(msg_callback)
mqtt_client.subscribe(SUB_TOPIC)
# 发送线程
_thread.start_new_thread(send_task, ())
####################
# 主循环
####################
while True:
# 检查是否有消息回调
mqtt_client.check_msg()
time.sleep(1)
运行日志
Connected on 192.168.31.138
Connected to MQTT Broker "iot.xpstem.com"
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
消息已发送到user/100008/ss10001/data, data:4095
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":1,"keepSeconds":3}}
pin 6 on...
pin 6 off...
消息已发送到user/100008/ss10001/data, data:4095
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":1,"keepSeconds":3}}
pin 6 on...
pin 6 off...
消息已发送到user/100008/ss10001/data, data:4095
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":1,"keepSeconds":3}}
pin 6 on...
pin 6 off...
消息已发送到user/100008/ss10001/data, data:4095
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":1,"keepSeconds":3}}
pin 6 on...
pin 6 off...
消息已发送到user/100008/ss10001/data, data:3303
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":1,"keepSeconds":3}}
pin 6 on...
pin 6 off...
消息已发送到user/100008/ss10001/data, data:1672
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":0,"keepSeconds":3}}
消息已发送到user/100008/ss10001/data, data:1417
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":0,"keepSeconds":3}}
消息已发送到user/100008/ss10001/data, data:1321
从user/100008/ss10003/ctrl接收到消息, data:{"data":{"state":0,"keepSeconds":3}}
上报数据查看

LED点阵屏通过LED(发光二极管)组成,以灯珠亮灭来显示文字、图片、动画、视频等,是各部分组件都模块化的显示器件,通常由显示模块、控制系统及电源系统组成。
Arduino-ESP32与ESP-IDF的版本对应表。
Arduino-ESP32提供了多种文件系统解决方案,本文将深入解析SPIFFS、LittleFS和SD卡三种主流存储方案,帮助你做出最佳选择。
ESP32-P4-WIFI6-DEV-KIT是一款微雪(Waveshare)设计的基于 ESP32-P4 的多媒体开发板,并集成 ESP32-C6,支持 Wi-Fi 6 和 BLE 5 无线连接。它提供丰富的人机交互接口,包括 MIPI-CSI (集成图像信号处理器 ISP)、MIPI-DSI、SPI、I2S、I2C、LED PWM、MCPWM、RMT、ADC、UART 和 TWAI 等。
ESP-Hosted 解决方案提供了将 ESP 板用作 Wi-Fi 和 Bluetooth/BLE 连接的通信处理器的方法。
ESP-Hosted 提供了一种将ESP芯片和模组用作通信协处理器的解决方案,该解决方案为主机微处理器或微控制器提供无线连接,使主机能够与其他设备通信。简单来说为网卡方案。
Arduino+ESP32上使用TFT_eSPI库快速点亮这个屏幕,驱动芯片ST7789
本文给出了一个ESP32与SPI 接口TFT显示屏接线的详细说明,供大家参考。
本文讲解如何在Micropython环境下使用ESP32的ESPNow功能进行数据传输。
ESP-Dongle 是一款基于 ESP32-S3 芯片开发的多功能 USB Device 解决方案。它不仅外形小巧,功能齐全,更集成了无线 U 盘、SD 卡读取以及 USB 无线网卡等多项功能。
ESP32 系列芯片可以利用 CSI 数据实现动作检测和存在检测。无论是自动调节灯光、风扇,还是节能控制,CSI 技术为智能家居带来了新的可能性。随着 CSI 技术的发展,未来的智能家居将能够更精确地感知和响应我们的行为,实现更高效、更人性化的控制。