[ ] import os %env KEY=tlt_encode %env NUM_GPUS=1 %env USER_EXPERIMENT_DIR=/workspace/tao-experiments/detectnet_v2 %env DATA_DOWNLOAD_DIR=/workspace/tao-experiments/data # %env NOTEBOOK_ROOT=~/tao-samples/detectnet_v2 os.environ["LOCAL_PROJECT_DIR"] = FIXME os.environ["LOCAL_DATA_DIR"] = os.path.join( os.getenv("LOCAL_PROJECT_DIR", os.getcwd()), "data" ) os.environ["LOCAL_EXPERIMENT_DIR"] = os.path.join( os.getenv("LOCAL_PROJECT_DIR", os.getcwd()), "detectnet_v2" ) # The sample spec files are present in the same path as the downloaded samples. os.environ["LOCAL_SPECS_DIR"] = os.path.join( os.getenv("NOTEBOOK_ROOT", os.getcwd()), "specs" ) %env SPECS_DIR=/workspace/tao-experiments/detectnet_v2/specs
用途 |
容器外(主机上) |
容器内(沿用TLT的习惯) |
项目工作位置 |
LOCAL_PROJECT_DIR |
|
存放模型训练输出结果 |
LOCAL_EXPERIMENT_DIR |
USER_EXPERIMENT_DIR |
存放数据集的路径 |
LOCAL_DATA_DIR |
DATA_DOWNLOAD_DIR |
配置文件存放路径 |
LOCAL_SPECS_DIR |
SPECS_DIR |
环境变量 |
设定值 |
LOCAL_PROJECT_DIR |
需要设置 |
LOCAL_EXPERIMENT_DIR |
$LOCAL_PROJECT_DIR/<项目名> |
LOCAL_DATA_DIR |
$LOCAL_PROJECT_DIR/data |
LOCAL_SPECS_DIR |
<执行脚本所在目录>/specs |
USER_EXPERIMENT_DIR |
/workspace/tao-experiments/<项目名> |
DATA_DOWNLOAD_DIR |
/workspace/tao-experiments/data |
SPECS_DIR |
/workspace/tao-experiments/<项目名>/specs |
[ ] # Define the dictionary with the mapped drives
drive_map = {
"Mounts": [
# Mapping the data directory
{
"source": os.environ["LOCAL_PROJECT_DIR"],
"destination": "/workspace/tao-experiments"
},
# Mapping the specs directory.
{
"source": os.environ["LOCAL_SPECS_DIR"],
"destination": os.environ["SPECS_DIR"]
},
]
}
Jetson Nano 推出 2GB 内存版本,不仅承袭了 Jetson Nano 所有 AI 开发环境与 IOT 控制功能,也能学习或开发 Python、OpenCV 与 AI 深度学习、ROS 自动控制等应用。